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A Note on Invariance Under

Superposed Rigid Body Motions

by

A. E. Green'r and P. M. Naghdi*

Consider a body with material points X and define a motion of the body by
a sufficiently smooth vector function ﬁ'which assigns to each material point X
the position x =)£(X‘,t) in the current configuration Kk at time t. Under
another motion, which differs from the given one only by a supefposed rigid
body motion, X moves to £+=')$‘+(X,t+) in the configuration k' at time t'=t+a,
where a is a constant. It is well known that particles of a continuum, which

at time t occupy the places X and ¥y, under superposed rigid body motions occupy

at a different time £ the places :“c'+ and ;Y.+ specified by

X =a+Qx , y =a+Qy , (1)

where a is a vector function of t and 9; is a proper orthogonal tensor function
of t. The vector a in (1)1,2 can be interpreted as a rigid body translation
and ,Q. as a rotation tensor. The results (1) are a consequence of the defini-
tion that under superposed rigid body motions the magnitude of the relative
displacement |x-§| of two particles of the body remains unaltered for all pairs
of particles. The relationships (1), in turn, induce certain transformations

on various kinematical quantities represented as scalars, vectors or tensors snd

some of these transform according to formulas of the type
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where s,x,i stand for a scalar, a vector and a second order tensor, respectively,
and g? denotes the transpose of g, Of course, not all kinematical guantities
transform according to (2) under superposed rigid body motions. In the current
literature on continuum mechanics, functions and fields whose values are scalars,
vectors and second order tensors and which obey transformations of the type (2)
are often referred to as objective; and, for brevity, we also adopt this
terminology here?
In continuum mechanics, one also needs to consider the behavior of various
constitutive response functions under superposed rigid body motioﬁs. Usually,
it is assumed that these response functions are unaltered under superposed
rigid body motions, apart from orientation in the case of vectors and tensors;
and it is then stipulated that they satisfy conditions which have the same form
as those in (2). The purpose of this note is to make these ideas more precise.
An essential aspect of the deyelopment presented here, however, was given
previously by Naghdi [1, pp. 484-U4B6] for the special case of the stress vector.
Consider first a scalar field ¢’=¢(§Rt) defined over a three-dimensional

region of Euclidean space &3

occupied by the body in the current configuration g,
and let ¢4==¢+(§f,t+) be the corresponding scalar field defined over the region
occupied by the body in the configuration K+ as a consequence of superposed rigid
body motions. As noted above, the magnitude of the relative displacement vector
|z:£| remains unaltered under superposed rigid body motions and this objective

character of a natural scalar magnitude suggests the following definition: The

scalar field ¢ is said to be unaltered under superposed rigid body motions if

*Our use of the term objective, however, is different from the corresponding
usage by many who appeal to the "principle of material frame-indifference"
and thereby allow g'to be an orthogonal tensor.

By

e




¢ -0 . | 3)

More generally, we assume that a relation of the type (3) holds if a scalar

field depends on more than one spatial variable. Thus, for example, if

¥=¥(x,y,t) is objective, then y (x,y',t") = y(x,y,t).

Consider next a vector field f= £(:£,t) defined over a three-dimensional
region of Euclidean space &3 occupied by the body in its current configuration
K, and let £+= £+(£+,t+) be the corresponding vector field defined over the region
‘ 3 occupied by the body in the configuration K+ as a consequence of superposed

rigid body motions (1). We say that under superposed rigid body motions a

vector field £ is unaltered, apart from orientation, if

EF (1) the magnitude of f(x,t) is the same as the magnitude of

£+(5+,t+); and

(i1) the magnitude of the angle between the vector 'f;(i,t) and the relative
. displacement vector y-x is the same as the magnitude of the angle
between £'(x',t') and the relative vector Y -X' when y is any
point of the current configuration different from X.
Let g denote the angle between the vectors y-x and f and e+ the angle

between £+-£+ and £+. Then, since by (1)

+ _+

L =a=x) , |lgy-=x|=I|yx| , ()

~ ~

it follows from (i) and (ii) above that f must satisfy the inner product

requirement

(x+_£+) . £+(£+.’t) = '5!‘+_?E'+| |£+(£"‘,t)|cos S ly-x| |£(£,t)|cos 8= (y-x) - £(x,t) (5)

i N ¢
WK b for all points x,y €K and for all t in some closed time interval [tl,t2]. Since
k'’ X,y are independent, we may differentiate (5) with respect to y and also use (1)
4 to obt'.ai.xlf
{-‘,‘. *’R:e condition (6)2 can also be deduced directly from (5)3 without recourse to

o differentiation since (5) holds for all arbitrary vectors y or y-x (since x is
% regarded as fixed) and since QTf*(x*,t*) - £(x,t) is independent of X

ot s e S " :
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Q=g or gz . 6)

It can easily be verified that a vector function which transforms according to
(6) satisfies the conditions (i) and (i11i). A vector field f whose value cbeys |
the transformation (6)2 under sui)erposed rigid body motions may be referred to
as objective, in line with the terminology introduced above [following Egs.
(2)]. We observe that the combination of (i) and (ii) is equivalent to the
requirement that the inner product f - (y-x), designated as y= j(:'s,x,t) say, is

an objective scalar:

+ + + + +
= )

V=R v LK), vy @

For reasons that will become apparent presently, we need to discuss further
the objectivity of a vector field such as £. Thus, let w =v’_v'(:'s,t) be any objec-

tive vector field whose objective character could be tested by (7) after identifying
£ with w. Consider again any vector field g= 5(:‘5 ,t) whose objectivity we wish

to investigate and suppose that g -w is known to be an objective scalar with g

independent of w:

AR A (8)
Since W is objective, i.e.,

AT A (9)
and since QT§+ - g is independent of w, from (8) we obtain

-2 s W Tl © (20)

so that g is an objective vector. The distinction between (7) and (8) is not
an idle point, since the latter provides a test for objectivity of a vector

field against any objective vector v which is independent of g and which is

L.
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_l- J not necessarily a relative displacement vector?
» Now let E = E(f’t) be a second order t_ensor field defined over the region
’ of space occupied by the current configuration K and let £+=£+(J£+,t+) be the
corresponding second order tensor' field defined over the region occupied by the
body in the configuration K+ as a result of superposed rigid body motions (1).
We say that unde.r superposed rigid body motions a tensor field E is unaltered,
apart from orientation, if
(i11) the magnitude of F(x,t) is the seme as the magnitude F (x ,t');
and
(iv) the magnitude of the angle g between the tensor F and the tensor
(y-x) ® (z-x) is unaltered when y and z are any points of the
current configuration different from X.
The condition (iv) requires, of course, the definition of an appropriate inner
product. Such a definition is discussed below [see Eqs. (18)] in the more
. general context of tensors of order n.

From (h)l and a similar relation with X’£+ replaced by ‘z..‘,'z:, we have

| xhe x| = (g ® ()| (12)

and it follows from (iii) and (iv) that

f : ({+-§+)8(£+-£+) l_l'fl |(g‘+-§+)®(£+-f)|cos o

|F| |(y-x)® (z-x)|cos o

L-pyes o

Since x,y,z are independent, we may differentiate (12) successively with

respect to ¥ and z and use relations of the type (1) to obtain

:: S1¢ may be noted that an important application of (8) arises in the case of the

g‘j scalar heat flux across any surface in the body which is assumed to be objective.
o Then, g and ¥ are respectively identified with the heat flux vector and the out-
. ward unit normal to the surface, and we deduce that the heat flux vector is
objective.
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£ =QEQ - | (13)

(y%) ® (zx) = O (%)

for all tensors (X.'i) ® (E.'i) independent of gT‘Ejg - F and then (13) follows

as before.

From (l+)l and (13) we see .that
(' -x) = O (zx) (25)

so that F(y-x) is an objective vector field. Thus, instead of using the
definitions (iii) and (iv) for objectivity of a tensor field F we could say
that F is objective provided the vector field E(!.'f.) is objective and we would
then recover the result (13).

More generally, let w be any objective vector field whose objective
character could be tested by (7) after identifying f with w, and consider any
second order tensor field g=§(£,t) which is independent of W and such that E W

is an objective vector field:

+ +
¢y’ - agy - (16)

In the same manner that the requirement (15) can lead to (13), from (16) we may

obtain the result

¢ =qdq’ . (17)

~ ~~

hgain it should be noted that the distinction between (15) and (16) is not an

idle point: the latter permits a test for objectivity of a tensor field against

6.
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any objective vector field W which is not necessarily a relative displacementf
Finally, suppose \L=x(:’5,t) is a tensor field of order n defined over the
region of Euclidean space occupied by the body in the current configuration K
and let Y‘+='Y‘+(J£+,t+) be the corresponding tensor field of order n defined over
the region occupied by the body in the configuration K+ as a result of super-

posed rigid body motions (1). Let Vi denote the components of V

Je iy
12 n
referred to an orthonormal basis s ®ei @ ®ei for the 3n-dimensional
iy T e op

vector space 8’“(&3) of tensors of order n defined over the n-fold product
53 xg3 X oo xs3, and assume an appropriate inner product on a'n(e?’), e.g.

V-W=V . W 5

~ ~ iliz"'ln il.iZ"'in

: (18)
vl - @on?
We say that under superposed rigid body motions a tensor field V is unaltered,
apart from orientation, if
(v) the magnitude of .Y.(?f.’t) is the same as the magnitude of X+(£+,t+);
and
(vi) the magnitude of the angle © between the tensor V and the tensor
(X.l'i) ® (ye-lhc') ® +++ ® (Xn-ﬁ) is unaltered when y,,...,y are
any points of the current configuration different from x. ’

As in the case of (11), we have

|G 3w e 8x)| = |(ReEpxe -8 x) (19)

and it follows from (v) and (vi) that

*An important application of (16) arises in the case of the stress vector across
any surface in the body which is assumed to be objective. Then, G and w are
respectively identified with the stress tensor and the outward unit normal to
the surface and we deduce that the stress tensor is objective.
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(-xe- e (k)

vl \(h:i)e---s(;\rn-iﬂcos 8
=V (yx)®---®(y -x) . (20)

Then, since y,,...,y are independent, we may differentiate (20) successively

with respect to y,,...,y and use relations of the type (1) to obtain

+ _+

¥ =Yy ®e. ®-.-Be =Q£
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whére Qi 4 are the components of the proper orthogonal tensor Q referred to
172 s
the orthonormal basis e, ®e, for the 32=9-dimensional vector space 32(&3) of
3
second order tensors defined over the product space 83 X 3. Further immediczte

generalizations of the result (21), for example similar to that discussed above

for second order tensors, are possible but we do not pursue the matter further.
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